Artificial Intelligent pada Game Decision Making

Decision Making

Decision Making adalah serangkaian algoritma yang dirancang dengan memasukan beberapa kemungkinan langkah yang bisa diambil oleh suatu aplikasi, Pada game ini decision making memberikan kemampuan suatu karakter untuk menentukan langkah apa yang akan diambil. Decision making dilakukan dengan cara menentukan satu pilihan dari list yang sudah dibuat pada algoritma yang dirancang. Algoritma decision making kerap digunakan dalam aplikasi game, akan tetapi algoritma decision making dapat diimplementasikan pada banyak aplikasi lain.

Decision Making terbagi menjadi 3 :

Decision Tree, State Machine dan Rule System

Decision Tree

Pohon Keputusan (Decision Tree) merupakan metode klasifikasi dan prediksi yang sangat kuat dan terkenal. Metode pohon keputusan mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan. Aturan dapat dengan mudah dipahami dengan bahasa alami. Aturan ini juga dapat diekspresikan dalam bentuk bahasa basis data seperti SQL untuk mencari record pada kategori tertentu. Pohon keputusan juga berguna untuk mengeksplorasi data, menemukan hubungan tersembunyi antara sejumlah calon variabel input dengan sebuah variabel target. Karena pohon keputusan memadukan antara eksplorasi data dan pemodelan, pohon keputusan ini sangat bagus sebagai langkah awal dalam proses pemodelan bahkan ketika dijadikan sebagai model akhir dari beberapa teknik lain(J R Quinlan, 1993).

Dalam situasi lain kemampuan untuk menjelaskan alasan pengambilan keputusan adalah sesuatu yang sangat penting. Misalnya pada perusahaan asuransi ada larangan resmi untuk mendeskriminasi berdasarkan variabel-variabel tertentu. Perusahaan asuransi dapat mencari sendiri keadaan yang mencerminkan bahwa mereka tidak menggunakan deskriminasi yang ilegal dalam memutuskan seseorang diterima atau ditolak. Sebuah pohon keputusan adalah sebuah struktur yang dapat digunakan untuk membagi kumpulan data yang besar menjadi himpunan-himpunan record yang lebih kecil dengan menerapkan serangkaian aturan keputusan. Anggota himpunan hasil menjadi mirip satu dengan yang lain dengan masing-masing rangkaian pembagian. Sebuah model pohon keputusan terdiri dari sekumpulan aturan untuk membagi sejumlah populasi yang heterogen menjadi lebih kecil, lebih homogen dengan memperhatikan pada variabel tujuannya. Sebuah pohon keputusan mungkin dibangun dengan seksama secara manual, atau dapat tumbuh secara otomatis dengan menerapkan salah satu atau beberapa algoritma pohon keputusan untuk memodelkan himpunan data yang belum terklasifikasi (Tan dkk, 2004).

Variabel tujuan biasanya dikelompokkan dengan pasti dan model pohon keputusan lebih mengarah pada perhitungan probabilitas dari masing-masing record terhadap kategori-kategori tersebut, atau untuk mengklasifikasi record dengan mengelompokkannya dalam satu kelas. Pohon keputusan juga dapat digunakan untuk mengestimasi nilai dari variabel kontinyu, meskipun ada beberapa teknik yang lebih sesuai untuk kasus ini.

Kelebihan dari metode pohon keputusan adalah:

  1. Daerah pengambilan keputusan yang sebelumnya kompleks dan sangat global, dapat diubah menjadi lebih simpel dan spesifik
  2. Eliminasi perhitungan-perhitungan yang tidak diperlukan, karena ketika menggunakan metode pohon keputusan maka sampel diuji hanya berdasarkan kriteria atau kelas tertentu
  3. Fleksibel untuk memilih fitur dari node internal yang berbeda, fitur yang terpilih akan membedakan suatu kriteria dibandingkan kriteria yang lain dalam node yang sama. Kefleksibelan metode pohon keputusan ini meningkatkan kualitas keputusan yang dihasilkan jika dibandingkan ketika menggunakan metode penghitungan satu tahap yang lebih konvensional
  4. Dalam analisis multivarian, dengan kriteria dan kelas yang jumlahnya sangat banyak, seorang penguji biasanya perlu mengestimasikan baik itu distribusi dimensi tinggi ataupun parameter tertentu dari distribusi kelas tersebut. Metode pohon keputusan dapat menghindari munculnya permasalahan ini dengan menggunakan kriteria yang jumlahnya lebih sedikit pada setiap node internal tanpa banyak mengurangi kualitas keputusan yang dihasilkan.

Kekurangan pada pohon keputusan adalah:

  1. Terjadi overlapping terutama ketika kelas-kelas dan kriteria yang digunakan jumlahnya sangat banyak. Hal tersebut juga dapat menyebabkan meningkatnya waktu pengambilan keputusan dan jumlah memori yang diperlukan
  2. Pengakumulasian jumlah kesalahan dari setiap tingkat dalam sebuah pohon keputusan yang besar
  3. Kesulitan dalam mendesain pohon keputusan yang optimal
  4. Hasil kualitas keputusan yang didapatkan dari metode pohon keputusan sangat tergantung pada bagaimana pohon tersebut didesain.

Pohon keputusan adalah model prediksi menggunakan struktur pohon atau struktur berhirarki.

Setiap percabangan menyatakan kondisi yang harus dipenuhi dan tiap ujung pohon menyatakan kelas data. Contoh pada Gambar diatas adalah identifikasi pembeli komputer. Dari pohon keputusan tersebut diketahui bahwa salah satu kelompok yang potensial membeli komputer adalah orang yang berusia di bawah 30 tahun dan juga pelajar. Setelah sebuah pohon keputusan dibangun maka dapat digunakan untuk mengklasifikasikan record yang belum ada kelasnya. Dimulai dari node root, menggunakan tes terhadap atribut dari record yang belum ada kelasnya ini lalu mengikuti cabang yang sesuai dengan hasil dari tes tersebut, yang akan membawa kepada internal node (node yang memiliki satu cabang masuk dan dua atau lebih cabang yang keluar), dengan cara harus melakukan tes lagi terhadap atribut atau node leaf. Record yang kelasnya tidak diketahui kemudian diberikan kelas yang sesuai dengan kelas yang ada pada node leaf. Pada pohon keputusan setiap simpul leaf menandai label kelas. Proses dalam pohon keputusan yaitu mengubah bentuk data (tabel) menjadi model pohon (tree) kemudian mengubah model pohon tersebut menjadi aturan (rule) (J R Quinlan, 1993).

Salah satu algoritma induksi pohon keputusan yaitu ID3 (Iterative Dichotomiser 3). ID3 dikembangkan oleh J. Ross Quinlan. Dalam prosedur algoritma ID3, input berupa sampel training, label training dan atribut. Algoritma Decision Tree C4.5 merupakan pengembangan dari ID3. Sedangkan pada perangkat lunak open source WEKA mempunyai versi sendiri dari C4.5 yang dikenal sebagai J48.

State Machine

Finite State Machines (FSM) adalah sebuah metodologi perancangan sistem kontrol yang menggambarkan tingkah laku atau prinsip kerja sistem dengan menggunakan tiga hal berikut: State (Keadaan), Event (kejadian) dan action (aksi). Pada satu saat dalam periode waktu yang cukup signifikan, sistem akan berada pada salah satu state yang aktif. Sistem dapat beralih atau bertransisi menuju state lain jika mendapatkan masukan atau event tertentu, baik yang berasal dari perangkat luar atau komponen dalam sistemnya itu sendiri (misal interupsi timer). Transisi keadaan ini umumnya juga disertai oleh aksi yang dilakukan oleh sistem ketika menanggapi masukan yang terjadi. Aksi yang dilakukan tersebut dapat berupa aksi yang sederhana atau melibatkan rangkaian proses yang relative kompleks.

Berdasarkan sifatnya, metode FSM ini sangat cocok digunakan sebagai basis perancangan perangkat lunak pengendalian yang bersifat reaktif dan real time. Salah satu keutungan nyata penggunaan FSM adalah kemampuannya dalam mendekomposisi aplikasi yang relative besar dengan hanya menggunakan sejumlah kecil item state. Selain untuk bidang kontrol, Penggunaan metode ini pada kenyataannya juga umum digunakan sebagai basis untuk perancangan protokol-protokol komunikasi, perancangan perangkat lunak game, aplikasi WEB dan sebagainya.

Dalam bahasa pemrograman prosedural seperti bahasa C, FSM ini umumnya direalisasikan dengan menggunakan statemen kontrol switch case atau/dan if..then. Dengan menggunakan statemen-statemen kontrol ini, aliran program secara praktis akan mudah dipahami dan dilacak jika terjadi kesalahan logika.

Rule Systems

Rule Based System merupakan metode pengambilan keputusan berdasarkan pada aturan-aturan tertentu yang telah ditetapkan. RBS dapat diterapkan pada agen virtual dalam bentuk kecerdasan buatan sehingga dapat melakukan tindakan tertentu. Tindakan tersebut direpresentasikan oleh set aturan yaitu penyebab tindakan itu terjadi, proses tindakan dan hasil dari tindakan tersebut.

Rule Base Systems (RBS) sistem yang baik untuk mendapat jawaban dari pertanyaan mengenai What (apa), How (bagaimana) dan Why (mengapa) dari Rule Base (RB) selama proses inferensia. Jawaban dan penjelasannya dapat disediakan dengan baik. Masalah yang ada dengan SBP adalah ia tak dapat secara mudah menjalankan proses akuisisi knowledge (pengetahuan) dan ia tak dapat mengupdate rule (aturan) secara otomatis. Hanya pakar yang dapat mengupdate Knowledge Base (KB) secara manual dengan dukungan dari knowledge engineer (insinyur pengetahuan). Lebih jauh kebanyakan peneliti dalam SBA lebih memperhatikan masalah optimasi pada rule yang sudah ada daripada pembangkitan rule baru dari rule yang sudah ada. Namun demikian, optimasi rule tak dapat mengubah hasil dari inferensia secara signifikan, yaitu dalam hal cakupan pengetahuan.

Ripple Down Rule (RDR) datang untuk mengatasi permasalahan utama dari sistem pakar: pakar tak perlu lagi selalu mengkomunikasikan pengetahuan dalam konteks yang spesifik. RDR membolehkan akuisisi yang cepat dan sederhana secara ekstrim tanpa bantuan dari knowledge engineer. Pengguna tak perlu menguji RB dalam rangka mendefinisikan rule baru: pengguna hanya perlu untuk mampu mendefinisikan rule baru yang secara benar mengklasifikasikan contoh yang diberikan, dan sistem dapat menentukan dimana suatu rule harus ditempatkan dalam hirarki rulenya. Keterbatasan dari RDR adalah kekurangan dalam hal inferensia yang berdayaguna. Tak seperti SBA yang dilengkapi dengan inferensia melalui forward dan backward chaining, RDR kelihatannya menggunakan Depth First Search (DFS) yang memiliki kekurangan dalam hal fleksibelitas dalam hal penjawaban pertanyaan dan penjelasan yang tumbuh dari inferensia yang berdayaguna.

Variable-Centered Intelligent Rule System (VCIRS) merupakan perkawinan dari SBA dan RDR. Arsitektur sistem diadaptasi dari SBA dan ia mengambil keuntungan-keuntungan yang ada dari RDR. Sistem ini mengorganisasi RB dalam struktur spesial sehingga pembangunan pengetahuan, inferensia pengetahuan yang berdayaguna dan peningkatan evolusional dari kinerja sistem dapat didapatkan pada waktu yang sama. Istilah “Intelligent” dalam VCIRS menekankan pada keadaan sistem ini yang dapat “belajar” untuk meningkatkan kinerja sistem dari pengguna sistem selama pembangunan pengetahuan (melalui analisis nilai) dan penghalusan pengetahuan (dengan pembangkitan rule).

Referensi :

http://eprints.dinus.ac.id/13726/1/Semantik-051_Fahrul.pdf

http://www.cs.bham.ac.uk/~mis157/Riset/VCIRS/VCIRS.php

http://blogs.itb.ac.id/aiceware/2012/09/23/algoritma-decision-tree-c4-5/

http://www.elektro.undip.ac.id/iwan/Perancangan%20Software%20Embedded%20System%20Berbasis%20FSM.pdf

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s